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Abstract

It is shown that the techniques developed as a tool for the stability analysis of the so
called desynchronized discrete event systems may be successfully applied to the inves-
tigation of the Skorokhod problem on an orthant in IRN . As a result, new conditions
for the uniqueness of the Skorokhod problem solution and for the Lipschitz continuity
of the corresponding oblique projection mapping are obtained. The robustness of non-
uniqueness of the Skorokhod problem solution as well as the robustness of the Lipschitz
continuity for the corresponding oblique projection mapping are also established.

Keywords: Skorokhod problem, Lipschitz continuity, stability, desynchronized sys-
tems, controllability, robustness.

Introduction

Recently much attention was paid to the development of methods for the analysis of dynamics
of multicomponent systems with asynchronously interacting subsystems (see [1, 3, 7] for
further references). As examples we can mention the systems with faults in data transmission
channels, multiprocessor computing and telecommunication systems, flexible manufacturing
systems and so on. It turned out that under weak and natural assumptions systems of this
kind possess such a strong property as robustness. In applications the robustness is often
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treated as reliability of a system with respect to perturbation of various nature, e.g., drift of
parameters, malfunctions or noises in data transmission channels, etc.

This paper was partially stimulated by fruitful discussions with A.Mandelbaum (Israel)
concerning the unique solvability of the dynamic complementarity problem that is also known
as the Skorokhod problem or the problem on processes with oblique reflections. These
problems arise in the system theory (properties of transducers with hysteresis nonlinearities),
stochastic flow networks, Brownian motion in bounded domains, mechanics of elastic-plastic
constructions, market economy, theory of partial differential equations, etc. (see, e.g., [4, 5,
6]).

The close relation of the stability problem for desynchronized systems with the Skorokhod
problem was found. This relation presents an opportunity to use the techniques of desyn-
chronized systems study for investigation of the Skorokhod problem and vice versa. The aim
of this paper is to describe the relations mentioned above and to derive some corollaries of
these relations.

1 Desynchronized systems

Let us introduce basic notions of the desynchronized systems theory. Consider a linear
system S consisting of N subsystems S1, S2, . . . ,SN that interact at some discrete instants
{T n}, −∞ < n < ∞. The moments of interaction may be chosen according to some
deterministic or stochastic law but generally they are not known in advance. Let the state of
each subsystem Si be determined within the interval [T n, T n+1) by a numerical value xi(n),
−∞ < n <∞.

Let at each moment T n ∈ {T k : −∞ < k < ∞} only one of subsystems Si (say, with
an index i = i(n) ∈ {1, 2, . . . , N}) may change its state and the law of the state updating
be linear:

xi(n+ 1) =
N∑
i=1

aijxj(n), i = i(n).

Consider the matrix A = (aij) and introduce for each i = 1, 2, . . . , N an auxiliary matrix Ai

(i-mixture of the matrix A) that is obtained from A by replacing its rows with indexes i 6= j
with the corresponding rows of the identity matrix I. Then the dynamics equation for the
system S can be written in the following compact form:

x(n+ 1) = Ai(n)x(n), −∞ < n <∞. (1)

The system described above is referred to as the linear desynchronized or asynchronous
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system. Desynchronized systems of more general nature and under more general assumptions
were considered in [1, 8].

1.1 Stability of desynchronized systems

Traditionally the stability is recognized as the most important intrinsic property of a system.
As was already mentioned, the index sequence {i(n)} in (1) may be unknown. This leads us
naturally to the following notion.

Definition 1.1 A desynchronized system S is called absolutely stable (AS) if for any index
sequence {i(n)} each solution x(n) of corresponding equation (1) is bounded for n ≥ 0.

An index sequence {i(n)} with infinitely many occurencies of each number 1, 2, . . . , N is
called regular.

Definition 1.2 A desynchronized system S is called absolutely asymptotically stable (AAS)
if it is AS and for any regular index sequence {i(n)} each solution x(n) of (1) tends to zero
as n→∞.

A system S is called Perron stable (PS) if for any index sequence {i(n)} and for any
sequence of vectors b(n) bounded for n ≥ 0, the solution x(n) of the inhomogeneous equation

x(n+ 1) = Ai(n)x(n) + (I − Zi(n))b(n),

satisfying initial condition x(0) = 0 (here Zi denotes a corresponding mixture of zero matrix
Z) is also bounded for n ≥ 0.

Some classes of AS and AAS desynchronized systems were studied in [1, 3, 7, 8]. The
same publications contain variety of necessary, sufficient, necessary and sufficient conditions
of AS and AAS.

Theorem 1.3 The AAS and PS properties for linear desynchronized systems are equivalent.

Thus, according to Theorem 1.3, both cases in Definition 1.2 deal with the same kind of
stability. The differences in formulations present good opportunities in investigation of the
stability of desynchronized systems.

A variety of AS conditions for desynchronized systems can be obtained with the help of
equivalent norm techniques (see, e.g., [1, 3, 7, 8, 9]) that is based on the following statement.
A desynchronized system possesses the AS property, iff there exists a norm ‖ · ‖∗ such that
‖Ai‖∗ ≤ 1, i = 1, 2, . . . , N . Analogous criteria for AAS and PS in terms of equivalent norms
with some additional properties are also known (see, e.g., [8]).
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1.2 Quasi-controllability and robustness of desynchronized sys-
tems

One of a most important properties of any system modeling real phenomena is the robustness
of its qualitative behavior with respect to small deviations of its parameters. As is easily
seen, generally the AS property is not robust. At the same the following result is valid.

Theorem 1.4 The AAS and PS properties for a linear desynchronized system are robust
with respect to small perturbation of entries of the matrix A.

As it turned out, robustness of instability of desynchronized systems is essentially affected
by such a property of a system as its quasi-controllability [10].

Definition 1.5 A desynchronized system S is called quasi-controllable if there is no non-
trivial proper subspace L ⊆ IRN that is invariant for matrixes A1, A2, . . . , AN .

It is very easy to verify quasi-controllability of a certain desynchronized system S as
follows. The system S is quasi-controllable, iff 1 is not an eigenvalue of the matrix A and the
matrix A is irreducible, i.e., it cannot be represented in a block triangular form by swapping
some of its rows and corresponding columns.

We shall say that a system S possess the AS property if it does not possess the AS
property.

Theorem 1.6 Property AS for a linear desynchronized quasi-controllable system is robust
with respect to small perturbation of entries of the matrix A.

We derive next two corollaries of this theorem. One of them is important for the under-
standing of a structure of the set of AS desynchronized systems and another is essential in
establishing relations between desynchronized systems and the Skorokhod problem.

Corollary 1.7 The set of AS linear desynchronized quasi-controllable systems is closed if
the proximity of systems is treated as the proximity of corresponding matrixes A.

Corollary 1.8 If a linear desynchronized system S possesses the property AS, then there
exists an index sequence {i(n)} such that there is an exponentially increasing solution of (1):

‖x(n)‖ ≥ λn‖x(0)‖, (n ≥ 0),

where λ > 1, x(0) 6= 0.
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2 Skorokhod problem

Let the state of a controlled system S at each moment t be uniquely determined by an input
(control) vector u(t) ∈ IRN and an output vector x(t) ∈ IRN . The output of the system is
assumed to be restricted by condition x(t) ∈ G ⊂ IRN , t ≥ 0, where G is a closed convex set
(we consider further only the case G = IRN

+ , where IRN
+ is a positive orthant in IRN).

The output x(t) inside G behaves in the same way as the input u(t), i.e., x(t) = x(t0) +
u(t) − u(t0) while x(t0) + u(t) − u(t0) ∈ G. The behavior of x(t) on the boundary of G
is determined by the special “reflection law”; for example, in [14, 12, 13] the case of the
“normal reflection” is considered, i.e.,

x(t) = x(t0) + u(t)− u(t0) +
∫ t

t0
y(τ)dτ

where the unknown vector y(τ), called a regulation vector, belongs to the inward normal
cone of G at the point x(τ). More general problems where considered in [5], the paper [6]
deals with the case of an “oblique” reflection law determined on each face of the orthant IRN

+

by the generalized normal vector qi. These problems are called Skorokhod problem (SP ) or
Dynamic complementarity problem (when G = IRN

+ ).
Introduce a formal definition of the SP . Denote by C([0, T ]; IRN) the space of continuous

functions from [0, T ] to IRN and by D([0, T ]; IRN) the space of right-continuous functions
with left limits on [0, T ]. Let |v|(T ) denote the total variation of function v on [0, T ]. For a
function of bounded variation x(t) : [0, T ]→ IRN we shall denote by d|x|(t) the corresponding
Lebesgue-Stieltjes measure on [0, T ]. Function x(t) is absolutely continuous with respect to
this measure and it has a d|x|(t)-measurable density function uniquely determined d|x|(t)-
almost everywhere by the equality γ(t) = dx(t)d|x|(t).

Let G be as above and the reflection cone d(x) be defined for each x ∈ G such that
d(x) = {0} whenever x ∈ intG.

Definition 2.1 (Skorokhod Problem) Let u ∈ D([0, T ]; IRN) with u(0) ∈ G be given.
The triple {x, u, y} is called solution of the SP (with respect to G and d(x)) if

• x = u+ y, x(0) = u(0), x(t) ∈ G for t ∈ [0, T ],

• there exists measurable γ : [0, T ]→ IRN such that γ(s) ∈ d(x(s)) for all s ∈ [0, T ] and

y(t) =
∫
(0,t]

γ(s)d|y|(s), |y(T )| <∞.

The corresponding mapping u→ x is called a Skorokhod mapping.
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2.1 Uniqueness of the Skorokhod problem solution

One of a most interesting and most difficult questions related to the Skorokhod problem is
the following. What are conditions that should be imposed on the generalized normal vectors
to ensure the uniqueness of the output x(t) for any continuous (or more general) input u(t)?

Definition 2.2 A SP is called uniquely solvable if it has exactly one solution for any input
u ∈ D([0, T ]; IRN), u(0) ∈ G.

For the case G = IRN
+ considered further we shall assume d(x) = cone{qi, i ∈ I(x)}, where

I(x) = {i : xi = 0}. We shall suppose that qii > 0, i = 1, 2, . . . , N . Let us associate with the
SP considered above the N×N -matrix Q = {qij = qji }, i, j = 1, 2, . . . , N . It is convenient to
denote the above SP by S(Q) . As is known (see, e.g., [5]), the problem S(Q) has a solution
for every input u(t) ∈ D([0, T ]; IRN), u(0) ∈ G, if and only if Q is a completely-S matrix
(remind that a matrix Q is called a S-matrix if there exists a vector η ≥ 0 such that Qη > 0;
Q is completely-S if all its principal submatrixes are S-matrixes). In [6] the first sufficient
conditions for the uniqueness of the S(Q) solution were obtained: the matrix I−Q should be
nonnegative with a spectral radius less then 1. The next statement follows from the results
in [2, 11]: if S(Q) is uniquely solvable, then Q is a P -matrix, i.e., all its principal minors
are strictly positive. We shall assume further that Q is a P -matrix.

The review of some recent results concerning the solvability of the SP and the Lipschitz
continuity of the Skorokhod mapping may be found in the paper [5]. Our aim is to formulate
necessary and sufficient conditions for the uniqueness of the Skorokhod problem solution and
for the Lipschitz continuity of the Skorokhod mapping in terms of the stability of certain
desynchronized system. To this end, let us associate with the matrix Q an auxiliary matrix

A = I − diag(q11, q22, . . . , qNN)−1Q. (2)

Theorem 2.3 The SP with an irreducible P -matrix Q is uniquely solvable iff the desyn-
chronized system with the matrix (2) is absolutely stable.

2.2 Lipschitz continuity of Skorokhod mapping

The Lipschitz continuity of the Skorokhod mapping is important in many situations (see,
e.g., [5] as an example of utilization of this property for obtaining a large deviation type
results and others). The Lipschitz continuity of SP on an arbitrary polyhedral domain G
with the normal law of reflection was first proved in [14] and recently rediscovered in [5].
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Definition 2.4 The Skorokhod mapping is called Lipschitz continuous if the SP is uniquely
solvable and there exists C > 0 such that for any pair of inputs u1, u2 satisfying ‖u1(t) −
u2(t)‖ ≤ 1 (0 ≤ t ≤ T ) the following inequality is fulfilled: ‖x1(t)− x2(t)‖ ≤ C (0 ≤ t ≤ T )
(here xi is the solution of SP for the input ui).

Theorem 2.5 The Skorokhod mapping for the SP with an irreducible P -matrix Q is Lips-
chitz continuous iff the desynchronized system with the matrix (2) is absolutely asymptotically
stable.

3 Corollaries and generalizations

Theorem 3.1 The SP with irreducible P -matrix Q is uniquely solvable if and only if the
SP with the transposed matrix Q′ is uniquely solvable.

Theorem 3.2 Both the properties of non-unique solvability and Lipschitz continuity of the
SP with irreducible P -matrix Q are robust with respect to small perturbation of Q.

Theorem 3.3 Let U = I − A, where A is irreducible matrix (2). If all the eigenvalues of
the symmetric matrix V = 1

2
(U + UT ) belong to the interval [ρ, 2 − ρ], 0 < ρ ≤ 1, and the

spectral radius r of the skew-symmetric matrix W = 1
2
(U − UT ) satisfies the equation

r < ρ

√
1− ρ
1 + ρ

 1√
1− (1− ρ2)N

− 1

 ,

then the problem S(Q) is uniquely solvable.

Theorems of this section follow from the results of desynchronization theory. All the
results of this paper may be generalized to the case of a polyhedral domain.
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